High-Performance Distributed RMA Locks

Patrick Schmid* Maciej Besta* Torsten Hoefler
Department of Computer Department of Computer Department of Computer
Science Science Science
. ETH Zurich ETH Zurich ETH Zurich
patrick.schmid@ieffects.com bestam@inf.ethz.ch htor@inf.ethz.ch

ABSTRACT

We propose a topology-aware distributed Reader-Writer lock
that accelerates irregular workloads for supercomputers and
data centers. The core idea behind the lock is a modular
design that is an interplay of three distributed data struc-
tures: a counter of readers/writers in the critical section, a
set of queues for ordering writers waiting for the lock, and a
tree that binds all the queues and synchronizes writers with
readers. Each structure is associated with a parameter for fa-
voring either readers or writers, enabling adjustable perfor-
mance that can be viewed as a point in a three dimensional
parameter space. We also develop a distributed topology-
aware MCS lock that is a building block of the above design
and improves state-of-the-art MPI implementations. Both
schemes use non-blocking Remote Memory Access (RMA)
techniques for highest performance and scalability. We eval-
uate our schemes on a Cray XC30 and illustrate that they
outperform state-of-the-art MPI-3 RMA locking protocols by
81% and 73%, respectively. Finally, we use them to accelerate
a distributed hashtable that represents irregular workloads
such as key-value stores or graph processing.

Code: spcl.inf.ethz.ch/Research/Parallel_Programming/RMALocks

1 INTRODUCTION

The scale of today’s data processing is growing steadily.
For example, the size of Facebook’s social graph is many
petabytes [7,45] and graphs processed by the well-known
HPC benchmark Graph500 [37] can have trillions of ver-
tices. Efficient analyses of such datasets require distributed-
memory (DM) machines with deep Non-Uniform Memory Ac-
cess (NUMA) hierarchies.

Locks are among the most effective synchronization mech-
anisms used in codes for such machines [6]. On one hand, if
used improperly, they may cause deadlocks. Yet, they have
intuitive semantics and they often outperform other schemes
such as atomic operations or transactions.

Designing efficient locks for machines with deep hierar-
chical memory systems is challenging. Consider four pro-

*Both authors contributed equally to this work.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

HPDC’16, May 31-June 04, 2016, Kyoto, Japan

ACM ISBN 978-1-4503-4314-5/16/05. .. $15.00
DOI: http:/ /dx.doi.org/10.1145/2907294.2907323

cesses competing for the same lock. Assume that two of
them (A and B) run on one socket and the remaining two (C
and D) execute on the other one. Now, in a naive lock design
oblivious to the memory hierarchy, the lock may be passed
between different sockets up to three times, degrading per-
formance (e.g., if the order of the processes entering the crit-
ical section (CS) is A, C, B, and D). Recent advances [9, 15]
tackle this problem by reordering processes acquiring the
lock to reduce inter-socket communication. Here, the order
of A, B, C, and D entails only one inter-socket lock trans-
fer, trading fairness for higher throughput. Extending such
schemes to DM machines with weak memory models in-
creases complexity. Moreover, expensive inter-node data
transfers require more aggressive communication-avoidance
strategies than those in intra-node communication [17]. To
our best knowledge, no previous lock scheme addresses these
challenges.

>
ers

Design A offers
high locality and
low fairness

—_—

DC-related
X parameter
Design B offers
more fairness
than Design A

T writers vs read
7 ——

Higher throughput fo

-

I

—

DT-related 5 E
parameter {\,@}

Lower latency, of writers vs readers

>

3
;“4" DQ-related
<% parameter

Figure 1: The space of parameters of the proposed Reader-Writer lock.

Another property of many large-scale workloads is that
they are dominated by reads (e.g., they constitute 99.8% of
requests to the Facebook graph [45]). Here, simple locks
would entail unnecessary overheads. Instead, the Reader-
Writer (RW) lock [35] can be used to reduce the overhead
among processes that only perform reads in the critical sec-
tion (CS). Initial RW NUMA-aware designs have recently been
introduced [8], but they do not address DM machines.

In this work, we develop a lock that addresses the above
challenges. Its core concept is a modular design for adjust-
ing performance to various types of workloads. The lock
consists of three key data structures. First, the distributed
counter (DC) indicates the number of readers or the pres-
ence of a writer in the CS. Second, the distributed queue

(DQ) synchronizes writers belonging to a given element of
the memory hierarchy (e.g., a rack). Finally, the distributed
tree (DT) binds together all queues at different levels of the
memory hierarchy and synchronizes writers with readers.
Each of these three structures offers an adjustable perfor-
mance tradeoff, enabling high performance in various set-
tings. DC can lower the latency of lock acquire/release per-
formed by either readers or writers, DQ can be biased to-
wards improving either locality or fairness, and DT can in-
crease the throughput of either readers or writers. The val-
ues of these parameters constitute a three dimensional space
that is illustrated in Figure 1. Each point is a specific lock
design with selected performance properties.

Most DM machines offer Remote Direct Memory Access
(RDMA) [39], a hardware scheme that removes the OS and
the CPU from the inter-node communication path. RDMA
is the basis of many Remote Memory Access (RMA) [17]
programming models. Among others, they offer a Parti-
tioned Global Address Space (PGAS) abstraction to the pro-
grammer and enable low-overhead direct access to remote
memories with put/get communication primitives. RMA
principles are used in various HPC languages and libraries:
Unified Parallel C (UPC) [44], Fortran 2008 [27], MPI-3 [36],
or SHMEM [4]. We will illustrate how to utilize RMA in
the proposed locks for DM machines, addressing the above-
mentioned challenges. In the following, we use MPI-3 RMA
but we keep our protocols generic and we discuss (§ 6) how
other RMA languages and libraries can also be used.

In summary, our key contributions are as follows:

e We develop a topology-aware distributed Reader-
Writer lock that enables various tradeoffs between fair-
ness, throughput, latency, and locality.

o We offer a topology-aware distributed MCS lock that
accelerates the state-of-the-art MPI-3 RMA codes [17].

o We illustrate that our designs outperform the state-of-
the-art in throughput/latency (7.2x/6.8x on average)
and that they accelerate distributed hashtables used in
key-value (KV) stores or graph processing.

2 RMA AND LOCKS

We start by discussing RMA (§ 2.1), our tool to develop the
proposed locks. Next, we present traditional (§ 2.2) and
state-of-the-art (§ 2.3, § 2.4) locks that we use and extend.
Notation/Naming: We denote the number of processes
as P; we use the notion of a process as it occurs frequently
in DM codes such as MPI [36]. Still, our schemes are inde-
pendent of whether heavyweight processes or lightweight
threads are incorporated. Each process has a unique ID
called the rank € {1,..,P}. A process in the CS is called
active. A null pointer is denoted as @. Then, N is the num-
ber of levels of the memory hierarchy of the used machine.
Here, the selection of the considered levels depends on the
user. For example, one can only focus on the nodes con-
nected with a network and racks that contain nodes and thus
N = 3 (three levels: the nodes, the racks, and the whole ma-
chine). We refer to a single considered machine part (e.g.,
a node) as an element. We refer to a node that is a shared-
memory cache-coherent domain connected to other such do-
mains with a non-coherent network as a compute node (or just
node). One compute node may contain smaller elements that

are cache-coherent and together offer non-uniform memory ac-
cess (NUMA). We refer to such elements as NUMA nodes; an
example NUMA node is a socket with a local DRAM. We
present symbols used in the paper in Table 1.

Number of processes.

Rank of a process that attempts to acquire/release a lock.
Number of levels of the considered machine.

Number of machine elements at level i; 1 <i < N.

Index used to refer to the ith machine level.

Index used to refer to the jth element at a given machine level.

- ZZw

Table 1: Symbols used in the paper.

2.1 RMA Programming

In RMA programming, processes communicate by directly
accessing one another’s memories. Usually, RMA is built
over OS-bypass RDMA hardware for highest performance.
RMA non-blocking puts (writes to remote memories) and
gets (reads from remote memories) offer low latencies, po-
tentially outperforming message passing [17]. Remote atom-
ics such as compare-and-swap [21,36] are also available. Fi-
nally, RMA flushes ensure the consistency of data by syn-
chronizing respective memories. RDMA is provided in vir-
tually all modern networks (e.g.,, IBM PERCS [3], IBM’s
on-chip Cell, InfiniBand [43], iWARP [18], and RoCE [26]).
Moreover, numerous libraries and languages offer RMA fea-
tures. Examples include MPI-3 RMA [36], UPC [44], Tita-
nium [22], Fortran 2008 [27], X10 [11], or Chapel [10]. The
number of RMA codes is growing steadily.

RMA Windows: In RMA, each process explicitly exposes
an area of its local memory as shared. In MPI, this re-
gion is called a window. Once shared, a window can be
accessed with puts/gets/atomics and synchronized with
flushes. We will refer to such an exposed memory in any
RMA library/language as a window.

RMA Functions: We describe the syntax/semantics of the
used RMA calls in Listing 1. All ints are 64-bit. For clarity,
we also use the bool type and assume it to be an int that
can take the 0 (false) or 1 (true) values, respectively. Values
returned by Get/FAO/CAS are only valid after the subsequent
Flush. The syntax is simplified for clarity: we omit a pointer
to the accessed window (we use a single window). We use
an origin/a target to refer to a process that issues or is tar-
geted by an RMA call.

/* Common parameters: target: target's rank; offset: an offset

into target's window that determines the location of the
targeted data; op: an operation applied to a remote piece of
data (either an atomic replace (REPLACE) or a sum (SUM));

oprd: the operand of an atomic operation op.x/

% ok % ok

/% Place atomically src_data in target's window.x*/
void Put(int src_data, int target, int offset);

O 0NN U W N

10 /x Fetch and return atomically data from target's window.x*/

11 int Get(int target, int offset);

12

13 /% Apply atomically op using oprd to data at target.x/

14 void Accumulate(int oprd, int target, int offset, MPI_Op op);
15

16 /% Atomically apply op using oprd to data at target

17 % and return the previous value of the modified data.x*/

18 int FAO(int oprd, int target, int offset, MPI_Op op);

19

20 /x Atomically compare cmp_data with data at target and, if

21 = equal, replace it with src_data; return the previous data.x*/
22 int CAS(int src_data, int cmp_data, int target, int offset);
23

24 /* Complete all pending RMA calls started by the calling process
25 x and targeted at target.*/

26 void Flush(int target);

Listing 1: The syntax/semantics of the utilized RMA calls.

2.2 Traditional Hardware-Oblivious Locks
We now present hardware-oblivious locks used in this work.

2.2.1 Reader-Writer (RW) Locks

Reader-Writer (RW) locks [12] distinguish between pro-
cesses that only perform reads when in the CS (readers) and
those that issue writes (writers). Here, multiple readers may
simultaneously enter a given CS, but only one writer can be
granted access at a time, with no other concurrent readers
or writers. RW locks are used in OS kernels, databases, and
present in various HPC libraries such as MPI-3 [36].

2.2.2 MCS Locks

Unlike RW locks, the MCS lock (due to Mellor-Crummey
and Scott) [34,40,42] does not distinguish between readers
or writers. Instead, it only allows one process p at a time
to enter the CS, regardless of the type of memory accesses
issued by p. Here, processes waiting for the lock form a
queue, with a process at the head holding the lock. The
queue contains a single global pointer to its tail. Moreover,
each process in the queue maintains: (1) a local flag that sig-
nals if it can enter the CS and (2) a pointer to its successor. To
enter the queue, a process p updates both the global pointer
to the tail and the pointer at its predecessor so that they
both point to p. A releasing process notifies its successor by
changing the successor’s local flag. The MCS lock reduces
the amount of coherence traffic that limits the performance
of spinlocks [2]. Here, each process in the queue spin waits
on its local flag that is modified once by its predecessor.

2.3 State-of-the-Art NUMA-Aware Locks

We now discuss lock schemes that use the knowledge of
the NUMA structure of the underlying machine for more
performance. We will combine and extend them to DM do-
mains, and enrich them with a family of adjustable parame-
ters for high performance with various workloads.

2.3.1 NUMA-Aware RW Locks

Many traditional RW locks (§ 2.2.1) entail performance
penalties in NUMA systems as they usually rely on a cen-
tralized structure that becomes a bottleneck and entails high
latency when accessed by processes from remote NUMA el-
ements. Calciu et al. [8] tackle this issue with a flag on each
NUMA node that indicates if there is an active reader on that
node. This reduces contention due to readers (each reader
only marks a local flag) but may entail additional overheads
for writers that check for active readers.

2.3.2 Hierarchical MCS Locks

Hierarchical locks tackle expensive lock passing described
in § 1. They trade fairness for higher throughput by or-
dering processes that enter the CS to reduce the number of
such passings. Most of the proposed schemes address two-
level NUMA machines [9, 14,31, 38]. Chabbi et al. consider
a multi-level NUMA system [9]. Here, each NUMA hierar-
chy element (e.g., a socket) entails a separate MCS lock. To
acquire the global lock, a process acquires an MCS lock at
each machine level. This increases locality but reduces fair-
ness: processes on the same NUMA node acquire the lock
consecutively even if processes on other nodes are waiting.

2.4 Distributed RMA MCS Locks

Finally, we present a distributed MCS (D-MCS) lock based
on an MPI-3 MCS lock [19]. We will use it to accelerate state-
of-the-art MPI RMA library foMPI [17] and as a building

block of the proposed distributed topology-aware RW and
MCS locks (§ 3).

2.4.1 Summary and Key Data Structures

Here, processes that wait for the D-MCS lock form a queue
that may span multiple nodes. Each process maintains sev-
eral globally visible variables. A naive approach would
use one window per variable. However, this would entail
additional memory overheads (one window requires Q(P)
storage in the worst case [17]). Thus, we use one win-
dow with different offsets determining different variables:
a pointer to the next process in the MCS queue (offset NEXT,
initially @) and a flag indicating if a given process has to
spin wait (offset WAIT, initially false). A selected process
(rank tail_rank) also maintains a pointer to a process with
the queue tail (offset TAIL, initially @).

2.4.2 Lock Protocols

We now describe the protocols for acquire/release. We refer
to respective variables using their offsets in the window.

Lock Acquire (Listing 2) First, p atomically modifies TAIL
with its own rank and fetches the predecessor rank (Line 6).
If there is no predecessor, it proceeds to the CS. Otherwise,
it enqueues itself (Line 10) and waits until its local WAIT is
set to false. Flushes ensure the data consistency.

1 void acquire() {

2 /* Prepare local fields. */

3 Put(®, p, NEXT);

4 Put(true, p, STATUS);

5 /* Enter the tail of the MCS queue and get the predecessor. */
6 int pred = FAO(p, tail_rank, TAIL, REPLACE);

7 Flush(tail_rank); /* Ensure completion of FAO. */

8 if(pred != @) { /* Check if there is a predecessor. */

9 /* Make the predecessor see us. */

10 Put(p, pred, NEXT); Flush(pred);

11 bool waiting = true;

12 do { /* Spin locally until we get the lock. */
13 waiting = Get(p, WAIT); Flush(p);

14 } while(waiting == true); } }

Listing 2: Acquiring D-MCS.

Lock Release (Listing 3) First, p checks if it has a suc-
cessor in the queue (Line 3). If there is none, it atomically
verifies if it is still the queue tail (Line 5); if yes, it sets TAIL to
@. Otherwise, p waits for a process that has modified TAIL
to update its NEXT field (Lines 9-11). If there is a successor,
the lock is passed with a single Put (Line 14).

1 void release() {

2 int succ = Get(p, NEXT); Flush(p);

3 if(succ == @) {

4 /* Check if we are waiting for the next proc to notify us.=x/
5 int curr_rank = CAS(®, p, tail_rank, TAIL);

6 Flush(tail_rank);

7 if(p == curr_rank)

8 return; /* We are the only process in the queue. x/
9 do { /% Wait for a successor. x/

10 successor = Get(p, NEXT); Flush(p);

11 } while (successor == @);

12 3

13 /* Notify the successor. */
14 Put (@, successor, WAIT); Flush(successor);}

Listing 3: Releasing D-MCS.

3 DISTRIBUTED RMA RW LOCKS

We now present a distributed topology-aware RW lock (RMA-
RW) for scalable synchronization and full utilization of par-
allelism in workloads dominated by reads. For brevity, we
focus on the RW semantics and only briefly discuss the
topology-aware MCS lock (§ 3.5); full algorithm listings for

Machine Structure

structure: of RMA-RW The RMA-RW lock c(R1)=1 c(R4)= e(W1,1)=1
Example c(R2)=1 c(R5)=6 e(W1,2)=1
mappings c(R3)=1 c(R6)=6 e(W1,3)=2

Example writer acquire scenario

Readers do not
enter any DQ

~~ Each DQ forms a
D-MCS lock (§ 2.4)

All writers enter
DQs at various
levels but they all W.

Ysmally run on X
llocated nodes

e

" All readers

@ Example writer release scenario

I
DC consists of 4 physical counters, there
is one counter per node, Tp-=6

also run on
allocated
nodes

Figure 2: An example RMA-RW on a three-level system.

Three levels
l' 1 machine
' 2 racks
N,=2
Scenario:
12 readers (@): DT and writers
(without DC and
12 wrlters (o) lock (§ 3. 5)
FW_O 5 -
Symbols specific to RMA-RW are presented in Table 2.
Lock Abbreviations We always refer to the proposed
RW and RMA-MCS, respectively. Both RMA-RW and
RMA-MCS use as their building block a simple distributed
Example In the whole section, we will use the example
shown in Figure 2. Here, N = 3 and the considered levels

e -

,‘ 4 nodes

R, B3R,

. readers) form an
the latter can be found in an extended technical report!.
topology-aware distributed RW and MCS lock as RMA-
topology-oblivious MCS lock (§ 2.4) denoted as D-MCS.
are: compute nodes, racks, and the whole machine.

Tpc | The Distributed Counter threshold (§ 3.2.1).
Ty, | The Locality threshold at level i (§ 3.2.2).
TR | The Reader threshold (§ 3.2.3).
Tw | The Writer threshold; Ty = Hizil Tp; (8 3.2.3).
c(p) | Mapping from a process p to its physical counter (§ 3.2.1).
e(p,i) | Mapping from a process p to its home machine element at level i (§ 3.2.2).
Fy | The fraction of writers in a given workload (the fraction of readers: 1 — Fy).

Table 2: Symbols used in RMA-RW.

3.1 Design Summary and Intuition

As explained in § 1, RMA-RW consists of three types of core
data structures: distributed queues (DQs), a distributed tree
(DT), and a distributed counter (DC). They are illustrated in
Figure 2. First, every machine element (at each considered
level) has an associated DQ and thus a D-MCS lock local to
this element (as opposed to the global RMA-RW lock). In
our example, every node, rack, and the whole machine have
their own DQ (and thus a local MCS lock). Note that some
DQs that are associated with elements such as nodes are not
necessarily distributed, but we use the same name for clar-
ity. Second, all the DQs form a DT that corresponds to the
underlying memory hierarchy, with one DQ related to one
tree vertex. For example, DQs associated with nodes that
belong to a given rack r constitute vertices that are children
of a vertex associated with a DQ running on rack r. Third,
DC counts active readers and writers and consists of several
physical counters located on selected processes. DT on its
own (without DC and any readers) constitutes RMA-MCS.
Writers A writer that wants to acquire a lock starts at
a leaf of DT located at the lowest level N (a node in our

1 http:/ /spclinf.ethz.ch/Research/Parallel_Programming/RMALocks

example). At any level i (2 < i < N), it acquires a local D-
MCS lock that corresponds to a subtree of D-MCS locks (and
thus DQs) rooted at the given element. Here, it may compete
with other writers. When it reaches level 1, it executes a
different protocol for acquiring the whole RMA-RW lock.
Here, it may also compete with readers. RMA-RW's locality-
aware design enables a shortcut: some writers stop before
reaching level 1 and directly proceed to the CS. This happens
if a lock is passed within a given machine element.

Readers Readers do not enter DQs and DT and thus have
a single acquire protocol. This design reduces synchroniza-
tion overhead among readers.

3.2 Key Data Structures

We now present the key structures in more detail.

3.2.1 Distributed Counter (DC)

DC maintains the number of active readers or writers. It
enables an adjustable performance tradeoff that accelerates
readers or writers. For this, one DC consists of multiple
physical counters, each maintained by every Tpcth process;
Tpc is a parameter selected by the user. To enter the CS,
a reader p increments only one associated physical counter
while a writer must check each one of them. Thus, selecting
more physical counters (smaller Tpc) entails lower reader
latency (as each reader can access a counter located on a
closer machine element) and contention (as each counter is
accessed by fewer readers). Yet, higher Tpc entails lower
latency for a writer that accesses fewer physical counters.

A physical counter associated with a reader p is located at
arank c(p); ¢(-) € {1,...,P} can be determined at compile-
or run-time. In a simple hardware-oblivious scheme, one
can fix ¢(p) = [p/Tpc]. For more performance, the user
can locate physical counters in a topology-aware way. For
example, if the user allocates x processes/node and a node
s hosts processes with x successive ranks starting from (s —
1)x + 1, then setting Tpc = kx in the above formula results
in storing one physical counter every kth node. This can be
generalized to any other machine element.

To increase performance, we implement each physical
counter as two 64-bit fields that count the readers (assigned
to this counter) that arrived and departed from the CS, re-

spectively. This facilitates obtaining the number of readers
that acquired the lock since the last writer and reduces con-
tention between processes that acquire and release the lock.
We dedicate one bit of the field that counts arriving readers
to indicate whether the CS of RMA-RW is in the READ mode
(it contains readers) or the WRITE mode (it contains a writer).

RMA Design of DC: Each physical counter occupies two
words with offsets ARRIVE (for counting arriving readers)
and DEPART (for counting departing readers); physical coun-
ters together constitute an RMA window.

3.2.2 Distributed Queue (DQ)

DQ orders writers from a single element of the machine that
attempt to enter the CS. DQs from level i have an associ-
ated threshold Ty ; that determines the maximum number
of lock passings between writers running on a machine el-
ement from this level before the lock is passed to a process
from a different element. We use a separate threshold Tj ;
for each i because some levels (e.g., racks) may need more
locality (a higher threshold) than others (e.g., nodes) due to
expensive data transfers. This design enables an adjustable
tradeoff between fairness and throughput at each level.

DQ extends D-MCS in that the local flag that originally
signals whether a process can enter the CS now becomes an
integer that carries (in the same RMA operation) the num-
ber of past lock acquires within a given machine element.
We use this value to decide whether to pass the lock to a
different element at a given level i (if the value reaches Ty ;)
or not (if the value is below T ;).

RMA Design of DQ: All DQs at a given level constitute an
RMA window. Respective offsets in the window are as fol-
lows: NEXT (a rank of the next process in the queue), STATUS
(an integer that both signals whether to spin wait and carries
the number of past lock acquires in the associated machine
element), and TAIL (a rank of the process that constitutes the
current tail of the queue). TAIL in DQ at level i associated
with jth element is stored on a process tail_rank[i, 1.

3.2.3 Distributed Tree of Queues (DT)

DT combines DQs at different memory hierarchy levels into
a single structure. This enables p to make progress in acquir-
ing/releasing RMA-RW by moving from level N to level 1.
Then, at the tree root, writers synchronize with readers.
Specifically, the lock is passed from writers to readers (if
there are some waiting) when the total number of lock pass-
ings between writers reaches a threshold Tyy. In our design,
Ty = Hfi 1 T1;. To avoid starvation of writers, we also intro-
duce a threshold Ty that is the maximum number of readers
that can enter the CS consecutively before the lock is passed
to a writer (if there is one waiting). Increasing T or Ty im-
proves the throughput of readers or writers because more
processes of a given type can enter the CS consecutively.

While climbing up DT, a writer must determine the next
DQ (and thus D-MCS) to enter. This information is en-
coded in a mapping e(-,-) and structure tail_rank[i,j].
e(p,i) € {1,..,N;} returns the ID of a machine element
associated with a process p at level i. An expression
tail_rank[i,e(p,)] returns the rank of a process that points
to the tail of a DQ at level i within a machine element as-
signed to p. This enables p to enter D-MCS at the next level
on the way to the CS. Similarly to ¢(p), e(p,i) can be deter-
mined statically or dynamically.

Depending on T} ;, some writers do not have to climb all
DT levels and can proceed directly to the CS. Thus, we fur-

ther extend the STATUS field used in DQ with one more spe-
cial value ACQUIRE_PARENT. This indicates that p cannot di-
rectly enter the CS and should continue up DT.

3.2.4 Discussion on the Status Field

A central part of DQ and DT is the STATUS field that enables
processes to exchange various additional types of informa-
tion in a single RMA communication action, including: (1) if
a lock mode changed (e.g., from READ to WRITE), (2) if a given
process should acquire a lock at a higher DT level, (3) if a
given process can enter the CS, and (4) the number of past
consecutive lock acquires. Two selected integer values are
dedicated to indicate (1) and (2). All the remaining possible
values indicate that the given process can enter the CS (3);
at the same time the value communicates (4).

3.3 Distributed Reader-Writer Protocol

We now illustrate how the above data structures play to-
gether in the acquire and release protocols. A writer starts
at the leaf of DT (level N) both for acquiring and releasing.
At any level i (2 < i < N), it proceeds up the tree executing
a protocol for a partial acquire/release of the respective part
of the tree (§ 3.3.1, § 3.3.2). At level 1, it executes a differ-
ent protocol for locking or releasing the whole lock (§ 3.3.3,
§ 3.3.4). Readers do not follow such a hierarchy and thus
have single acquire (§ 3.3.5) and release (§ 3.3.6) protocols.

3.3.1 Writer Lock Acquire: Level N to 2 (Listing 4)

Intuition: p enters the DQ associated with a given level i and
its home element e(p, i); it then waits for the update from
its predecessor. If the predecessor does not have to hand
over the lock to a process from another element (i.e., has
not reached the threshold T ;), the lock is passed to p that
immediately enters the CS. Otherwise, p moves to level i — 1.
Details: p first modifies its NEXT and STATUS to reflect it spin
waits at the DQ tail (Lines 2-3). Then, it enqueues itself
(Line 5). If there is a predecessor at this level, p makes itself
visible to it with a Put (Line 8) and then waits until it obtains
the lock. While waiting, p uses Gets and Flushes to check
for any updates from the predecessor. If the predecessor
reached T ; and released the lock to the parent level, p must
itself acquire the lock from level i — 1 (Line 23). Otherwise,
it can directly enter the CS as the lock is simply passed to it
(Line 18). If there is no predecessor at level i, p also proceeds
to acquire the lock for level i — 1 (Line 23).

1 void writer-acquire<i>() {

2 Put(®, p, NEXT);

3 Put(WAIT, p, STATUS); Flush(p);

4 /* Enter the DQ at level i and in this machine element. */
5 int pred = FAO(p, tail_rank[i,e(p,i)], TAIL, REPLACE);

6 Flush(tail_rank[i,e(p,i)1);

7 if(pred != @) {

8 Put(p, pred, NEXT); Flush(pred); /% pred sees us. %/

9 int status = WAIT;

10 do { /% Wait until pred passes the lock. x/

11 status = Get(p, STATUS); Flush(p);

12 } while(status == WAIT);

13 /* Check if pred released the lock to the parent level. This
14 would happen if Tp; is reached. =%/

15 if(status != ACQUIRE_PARENT) {

16 /% Tp; is not reached. Thus, the lock is passed to
17 p that directly proceeds to the CS. */

18 return; /* The global lock is acquired. %/

19 3}

20 3

21 /* Start to acquire the next level of the tree.x/
22 Put(ACQUIRE_START, p, STATUS); Flush(p);
23 writer-acquire<i—1>();3}

Listing 4: Acquiring the RMA-RW lock by a writer; levels N to 2.

3.3.2 Writer Lock Release: Level N to 2 (Listing 5)

Intuition: p passes the lock within e(p,i) if there is a suc-
cessor and Tj ; is not yet reached. Otherwise, it releases the
lock to the parent level i — 1, leaves the DQ, and informs any
new successor that it must acquire the lock at level i — 1.

Details: p first finds out whether it has a successor. If there
is one and Tp ; is not yet reached, the lock is passed to it
with a Put (Line 8). If Ty ; is reached, p releases the lock
for this level and informs its successor (if any) that it has to
acquire the lock at level i — 1. If there is no known successor,
it checks atomically if some process has already entered the
DQ at level i (Line 15). If so, the releaser waits for the suc-
cessor to make himself visible before it is notified to acquire
the lock at level i — 1.

1 void writer-release<i>() {

2 /* Check if there is a successor and get the local status. */
3 int succ = Get(p, NEXT);

4 int status = Get(p, STATUS); Flush(p);

5 if(succ != @ && status < 7ij) {

6 /* Pass the lock to succ at level i as well as the number

7 of past lock passings within this machine element. */

8 Put(status + 1, succ, STATUS); Flush(succ); return;

9 3
10 /* There is no known successor or the threshold at level i is
11 reached. Thus, release the lock to the parent level. %/

12 writer-release<i—1>();
13 if(succ == @) {

14 /* Check if some process has just enqueued itself. */

15 int curr_rank = CAS(®, p, tail_rank[i,e(p,i)], TAIL);

16 Flush(tail_rank[i,e(p,i)1);

17 if(p == curr_rank) { return; }

18 do { /* Otherwise, wait until succ makes itself visible. =%/
19 succ = Get(p, NEXT); Flush(p);

20 } while(succ == @);

21 3

22 /% Notify succ to acquire the lock at level i—1. */
23 Put (ACQUIRE_PARENT, succ, STATUS); Flush(succ); }

Listing 5: Releasing an RMA-RW lock by a writer; levels N to 2.

3.3.3 Writer Lock Acquire: Level I (Listing 7)

Intuition: This scheme is similar to acquiring the lock at
lower levels (§ 3.3.1). However, the predecessor may notify
p of the lock mode change that enabled readers to enter the
CS, forcing p to acquire the lock from the readers.

Details: p first tries to obtain the lock from a predecessor
(Lines 2-18). If there is one, p waits until the lock is passed.
Still, it can happen that the predecessor hands the lock over
to the readers (Line 14). Here, p changes the mode back to
WRITE before entering the CS (Line 16); this function checks
each counter to verify if there are active readers. If not, it
switches the value of each counter to WRITE (see Listing 6).
If there is no predecessor (Line 19), p tries to acquire the lock
from the readers by changing the mode to WRITE (Line 21).

3.3.4 Writer Lock Release: Level I (Listing 8)

Intuition: p first checks if it has reached Ty and if there is a
successor waiting at level 1. If any case is true, it passes the
lock to the readers and notifies any successor that it must
acquire the lock from them. Otherwise, the lock is handed
over to the successor.

Details: First, if Tyy is reached, p passes the lock to the read-
ers by resetting the counters (Line 6). Then, if it has no
successor, it similarly enables the readers to enter the CS
(Line 12). Later, p appropriately modifies the tail of the DQ
and verifies if there is a new successor (Line 17). If necessary,
it passes the lock to the successor with a Put (line 23) and
simultaneously (using next_stat) notifies it about a possible
lock mode change.

1 /*xxx%%x Change all physical counters to the WRITE mode xx%%xx%/
2 void set_counters_to_WRITE() {

3 /* To simplify, we use one counter every Tpcth process.*/

4 for(int p = @; p < P; p += Tpc) {

5 /* Increase the arrival counter to block the readers.x*/

6 Accumulate (INT64_MAX/2, p, ARRIVE, SUM); Flush(p);

7%}

8

9 /x*kkkxkxkkkkkxxxx* Reset one physical counter *xxxxkxkkkkkxxkxkkkx/
10 void reset_counter(int rank) {

11 /* Get the current values of the counters.=x/

12 int arr_cnt = Get(rank, ARRIVE), dep_cnt = Get(rank, DEPART);
13 Flush(rank);

14 /* Prepare the values to be subtracted from the counters.x*/
15 int sub_arr_cnt = -dep_cnt, sub_dep_cnt = -dep_cnt;

16

17 /* Make sure that the WRITE is reset if it was set.x/

18 if(arr_cnt >= INT64_MAX/2) {

19 sub_arr_cnt -= INT64_MAX/2

20 }

21 /* Subtract the values from the current counters.x*/

22 Accumulate (sub_arr_cnt, rank, ARRIVE, SUM);

23 Accumulate (sub_dep_cnt, rank, DEPART, SUM); Flush(rank);

24 3}

25

26 /***kxxxkkkkkxxxx*x Reset all physical counters xxxxkxkkkkxxxkk*x/

N
N

void reset_counters() {
for(int p = @; p < P; p += Tpc) { reset_counter(p); } }

N
®

Listing 6: Functions that manipulate counters.

1 void writer-acquire<i>() {

2 Put(®, p, NEXT); Put(WAIT, p, STATUS);

3 Flush(p); /% Prepare to enter the DQ.x/

4 /* Enqueue oneself to the end of the DQ at level 1.%/

5 int pred = FAO(p, tail_rank[1,e(p,1)1, TAIL, REPLACE);

6 Flush(tail_rank[1,e(p,1)1);

7

8 if(pred !'= @) { /x If there is a predecessor...x*/

9 Put(p, pred, NEXT); Flush(pred);

10 int curr_stat = WAIT;

11 do { /% Wait until pred notifies us.*/

12 curr_stat = Get(p, STATUS); Flush(p);

13 } while (curr_stat == WAIT);

14 if(curr_stat == MODE_CHANGE) { /* The lock mode changed...x*/
15 /* The readers have the lock now; try to get it back.=*/
16 set_counters_to_WRITE();

17 Put (ACQUIRE_START, p, STATUS); Flush(p);

18 1y

19 else { /x If there is no predecessor...x*/

20 /* Change the counters to WRITE as we have the lock now.x*/
21 set_counters_to_WRITE();

22 Put (ACQUIRE_START, p, STATUS); Flush(p); } }

Listing 7: Acquiring an RMA-RW lock by a writer; level 1.

3.3.5 Reader Lock Acquire (Listing 9)

Intuition: Here, p first spin waits if there is an active writer
or if p’s arrival made its associated counter ¢(p) exceed Tg.
Then, it can enter the CS. If ¢(p) = Ty, then p resets DC.
Details: In the first part, p may spin wait on a boolean
barrier variable (Line 5), waiting to get the lock from a
writer. Then, p atomically increments its associated counter
and checks whether the count is below Tg. If yes, the lock
mode is READ and p enters the CS. Otherwise, either the lock
mode is WRITE or T is reached. In case of the latter, p checks
if there are any waiting writers (Line 17). If there are none, p
resets the DC (Line 20) and re-attempts to acquire the lock.
If there is a writer, p sets the local barrier and waits for DC
to be reset by the writer.

3.3.6 Reader Lock Release (Listing 10)

Releasing a reader lock only involves incrementing the de-
parting reader counter.

1 void reader-release() {
2 Accumulate(1, c¢(p), DEPART, SUM); Flush(c(p)); }

Listing 10: Releasing an RMA-RW reader lock.

3.4 Example
Consider the scenario from Figure 2. Here, there are three
machine levels, 12 readers, and 12 writers (Fyy = 0.5).

void writer-release<1>(){
bool counters_reset = false;
/* Get the count of consecutive lock acquires (level 1).x/
int next_stat = Get(p, STATUS); Flush(p);
if(++next_stat == Ty) { /x Pass the lock to the readers.x/
reset_counters();/* See Listing 6.*/
next_stat = MODE_CHANGE; counters_reset = true;
}
int succ = Get(p, NEXT); Flush(p);
if(succ == @) { /* No known successor.x*/
if(!counters_reset) { /x Pass the lock to the readers.x/
reset_counters(); next_stat = MODE_CHANGE;/* Listing 6.*/

1

2

3

4

5

6

7

8

9

10

11

12

13 }
14 /* Check if some process has already entered the DQ.=*/
15 int curr_rank = CAS(®, p, tail_rank[1,e(p,1)1, TAIL);
16 Flush(tail_rank[1,e(p,1)1);

17 if(p == curr_rank) { return; } /* No successor...*/

18 do { /* Wait until the successor makes itself visible.x/
19 succ = Get(p, NEXT); Flush(p);

20 } while (succ == @);

22 /* Pass the lock to the successor.x/

23 Put(next_stat, succ, STATUS); Flush(succ); 3}

Listing 8: Releasing an RMA-RW lock by a writer; level 1.

1 void reader-acquire() {

2 bool done = false; bool barrier = false;

3 while (!done) {

4 int curr_stat = 0;

5 if(barrier) {

6 do {

7 curr_stat = Get(c(p), ARRIVE); Flush(c(p));

8 } while(curr_stat >= Tg);

9 }

10

11 /* Increment the arrival counter.=x/

12 curr_stat = FAO(1, c¢(p), ARRIVE, SUM); Flush(c(p));

13 if(curr_stat >= Tg) { /* Tr has been reached...*/

14 barrier = true;

15 if(curr_stat == TR) {/* We are the first to reach Tr.*/
16 /* Pass the lock to the writers if there are any.x/
17 int curr_tail = Get(tail_rank[1,e(p,1)1, TAIL);

18 Flush(tail_rank[1,e(p,1)1);

19 if(curr_tail == @) { /x There are no waiting writers.x*/
20 reset_counter(c(p)); barrier = false;/* Listing 6.%/
21)

22 }

23 /* Back off and try again.x*/

24 Accumulate (-1, c(p), ARRIVE, SUM); Flush(c(p));

25 }r 3

Listing 9: Acquiring an RMA-RW lock by a reader.

Writer Acquire Assume a new writer Wy running on a
node related to DQs3; attempts to acquire RMA-RW (Fig-
ure 2, Part 5). First, it enters DQs; (Listing 4). As this
queue is not empty, Wy spins locally (Lines 10-12) until its
predecessor Wy modifies Wy’s STATUS. Now, if Wy has not
yet reached Tp 3, Wy gets the lock and immediately pro-
ceeds to the CS (Lines 15-19). Otherwise, it attempts to
move to level 2 by updating its STATUS (Line 22) and calling
writer-acquire<i — 1>(). Thus, it enters DQ,; and takes
the same steps as in DQj3 1: it spins locally until W, changes
its STATUS and it either directly enters the CS or it proceeds
up to level 1. Assuming the latter, Wy enters DQ;; and
waits for W to change its STATUS (Listing 7, Lines 10-12). If
STATUS is different from MODE_CHANGE (Line 17), Wy can enter
the CS. Otherwise, the lock was handed over to the readers
and Wy calls set_counters_to_WRITE() to change all physi-
cal counters to the WRITE mode (Line 15), which blocks new
incoming readers. At some point, the readers reach the Tg
threshold and hand the lock over to Wi.

Writer Release Assume writer Wy occupies the CS and
starts to release RMA-RW (Figure 2, Part 6). It begins with
level 3 (Listing 5). Here, it first checks if it has a successor in
DQj3 1 and if Ty 3 is not yet reached (Line 5). Its successor is
Wi and assume that the latter condition is true. Then, Wy
passes the lock to Wyg by updating its STATUS so that it con-
tains the number of lock acquires within the given element.

If T1 3 is reached, Wy releases the lock at level 2 (Line 12).
Here, it repeats all the above steps (its successor is W) and
then starts to release the lock at level 1 (Listing 8). Here it
hands the lock over to the readers if Ty is reached (Lines 5-
8). Finally, it notifies its successors at each level (N to 2) to
acquire the lock at the parent level (Listing 5, Line 23).

Reader Acquire A reader R, that attempts to acquire
RMA-RW first increments c(Ry) (Listing 9, Line 12) and
checks if Ty is reached (in the first attempt Lines 6-8 are
skipped). If yes, it sets barrier (Line 14), backs off (Line 24),
and reattempts to acquire the lock. In addition, if Ry is the
first process to reach Ty, it also checks if there are any wait-
ing writers (Lines 15-21). If not, it resets c(Ry) and sets
barrier to false so that it can enter the CS even if Tz was
reached. Then, it reexecutes the main loop (Line 3); this time
it may enter the loop in Lines 6-8 as the lock was handed
over to a writer (if Tg was reached). In that case, R, waits
until its ¢(Ry) is reset (Listing 9, Lines 6-8).

Reader Release This is a straightforward scenario in
which Ry only increments DEPART at ¢(Ry).

3.5 RMA-RW vs. RMA-MCS

We now outline the design of RMA-MCS; the details are in
the technical report. RMA-MCS consists of DQs and DT
but not DC. Tg and Ty are excluded as the are no readers.
Similarly, T;, 1 is not applicable because there is no need to
hand the lock to readers. The acquire/release protocols are
similar to the ones in Listings 4 and 5 for any i € {1,..., N}.

4 CORRECTNESS ANALYSIS

We now discuss how RMA-RW ensures three fundamen-
tal correctness properties: mutual exclusion (ME), deadlock
freedom (DF), and starvation freedom (SF) [21]. At the end
of this section, we show how we use model checking to ver-
ify the design.

4.1 Mutual Exclusion
ME is violated if two writers or a reader and a writer enter
the CS concurrently. We now discuss both cases.

Writer & Writer: We distinguish between writers that
are in the same DQ (case A) or in different ones (case B). In
case A, they operate on the same TAIL. Thus, they could only
violate ME if both writers do not see any predecessor. This
is prevented by using FAO for atomically modifying TAIL. In
case B, two writers competing in different DQs have a com-
mon DQ in DT where they or their predecessor compete for
the lock. Similarly as above, the MCS lock must be acquired
at each DT level. If a predecessor has to compete for the
lock, a writer waits until he gets notified by its predecessor
and thus does not interfere in the lock acquiring process.

Reader & Writer: A reader and a writer can be active at
the same time if the lock mode is READ and about to change
to WRITE. This is because the reader on its own cannot change
the mode and as a consequence cannot acquire a lock while
a writer is active. However, a writer can alter the mode
to WRITE while a reader is active. This is prevented by a
writer that checks each counter again for active readers after
changing all of them.

4.2 Deadlock Freedom

Here, we also differentiate two base cases: two writers dead-
lock or a reader and a writer deadlock.

Writer & Writer The only way how writers deadlock is
if there is a cycle in a queue. For two writers it means that

Scheme 6 inter- Scheme intra- inter-
-+ foMP]-Spin — node -+ foMPI-Spin _, node /| | node
+D-MCS o +D-MCS 03-
10001 RMA“MCS E ~RVANCS|| g
intra- | inter- 3] Performance initially S
@ node | node Ke] increases due to high o
=3 c4 intra-node bandwidth c A
& 100 £ £2°
1 5 =
3 - = 5
= w o o
@ - < <
— [=24 =2
/ > =1
<] <]
10 / I~ e
Performarzjce mitilsll);‘ '-S ¥ ﬁ
increases due to hig D S e —
intra-node bandwidth o — T T T o +

256 1024 56 1024

16 64
MPI processes (P)
(a) Latency (LB).

16 64 2!
MPI processes (P)
(b) Throughput (ECSB).
Figure 3: (§ 5.1) Performance analysis of RMA-MCS and comparison to the state-of-the-art.

one becomes the predecessor of the other. Therefore, both
wait on the other to get notified. This cannot happen as the
processes use an atomic FAO to obtain their predecessor. As
explained, this function is atomic and thus we can order the
uses of FAO in a timeline. This contradicts that the writers
have a cycle in their waiting queue.

Reader & Writer A reader may deadlock after Ty is
reached (case A) or the mode goes into WRITE (case B). In
case A, either there is no writer active and the reader resets
the DC or a writer is waiting and a reader backs off. Thus,
the writer changes the mode to WRITE after all readers back
off which is done in a finite time. As writers do not dead-
lock and the last writer changes the mode back to READ, no
reader will deadlock in case B either.

4.3 Starvation Freedom
Finally, we show that no writer or reader can starve.

Writers A writer may starve while other writers or readers
are active. We prevent it with different thresholds. First,
there is Ty ; at each DT level i. After reaching T} ;, writers in
one of the associated DQs at i release the lock to the next DQ
at the same level. Thus, we only need to show that one DQ is
starvation-free which is already provided by the underlying
MCS queue lock design. Yet, there is the Ty threshold that
regulates the number of lock acquires by readers for one
counter before the readers associated to the counter back off.
We already showed that the readers make progress. Thus,
at some point, all counters have reached Tz and a writer
changes the mode to WRITE.

Readers There are two ways how readers could starve.
First, other readers are active while processes associated
with a certain counter back off to let writers acquire the
lock. However, there is the T threshold for each counter
after which the readers associated with this counter back
off. Thus, eventually, all readers wait on the writers to take
over. This leads us to the second case where the writers have
the lock and do not pass it to the waiting readers. This is not
possible since there is the Ty ; threshold at each level of the
writer hierarchy and at most after Tyy = Hfi 1 Tr,i lock pass-
ings between writers the lock goes to readers; we have also
already illustrated that the writers will make progress until
this threshold is reached.

4.4 Model Checking

To confirm that RMA-RW provides the desired correctness
properties, we also conduct model checking with SPIN [24]
(v6.4.5), a software tool for the formal verification of multi-
threaded codes. The input to SPIN is constructed in
PROMELA, a verification modeling language that allows for
the dynamic creation of concurrent processes to model, for
example, distributed systems. We evaluate RMA-RW for up

Performance initially
increases due to high

intra-node bandwidth

16 64 25
MPI processes (P)
(c) Throughput (SOB).

g
o

Scheme

- foMP|-Spi
Tpeeen
= RMA-MCS

o

intra-finter- Scheme 0.6- a_intra-jinter- Scheme
node | node - foMPI-Spin node | node -+ foMPI-Spin
+D-MCS ' +D-MCS
\ = RMA-MCS o\ * RMA-MCS
Noa Eehy “u

'S
grl_put [n;ln Iocgs/s]
=

w
w

— 02- o

Trgoughgut [mgn Ioclés/s]
N

Throu

16 64 256 1024
MPI processes (P)

(e) Throughput (WARB).

16 64 256 1024
MPI processes (P)

(d) Throughput (WCSB).

6 1024

to N € {1,..,4} and a maximum of 256 processes. The ma-
chine elements on each level of the simulated system have
the same number of children. Thus, for N = 3 and four
subelements per machine element, the system would con-
sist of 43 processes. Each process is defined randomly either
as a reader or a writer at the beginning and after that, it
tries to acquire the lock 20 times. We choose this value as it
generates a feasible number of cases that SPIN has to check
even for a high count of processes. During the execution of
a test, we use a designated process that verifies that either
only one writer or multiple readers hold a lock. All the tests
confirm mutual exclusion and deadlock freedom.

5 EVALUATION

We now illustrate performance advantages of RMA-MCS
and RMA-RW over state-of-the-art distributed locks from
the foMPI implementation of MPI-3 RMA [17].

Comparison Targets We consider D-MCS and both foMPI
locking schemes: a simple spin-lock (foMPI-Spin) that en-
ables mutual exclusion, and an RW lock (foMPI-RW) that pro-
vides both shared and exclusive accesses to the CS.

Selection of Benchmarks We conduct six series of ex-
periments. The latency benchmark (LB) measures the la-
tency of both acquiring and releasing a lock; an impor-
tant performance metric in workloads such as real-time
queries. Four other analyses obtain throughput under vary-
ing conditions and parameters. The empty-critical-section
benchmark (ECSB) derives the throughput of acquiring
an empty lock with no workload in the CS. The single-
operation benchmark (SOB) measures the throughput of ac-
quiring a lock with only one single operation (one mem-
ory access) in the CS; it represents irregular parallel work-
loads such as graph processing with vertices protected by
fine locks. Next, the workload-critical-section benchmark
(WCSB) covers variable workloads in the CS: each process
increments a shared counter and then spins for a random
time (1-4yus) to simulate local computation. The wait-after-
release benchmark (WARB) varies lock contention: after re-
lease, processes wait for a random time (1-4ys) before the
next acquire. The throughput experiments represent data-
and communication-intensive workloads. Finally, we inte-
grate and evaluate the proposed locks with a distributed
hashtable (DHT) to cover real codes such as key-value stores.

Varied Parameters To evaluate various scenarios, we
vary: Tpc, Tp; and Tg. Unless stated otherwise, we set
the fraction of writers Fiy = 0.2% as it reflects Facebook
workloads [45]; however, we also evaluate other values.

Experimentation Methodology To calculate the latency,
we derive the arithmetic mean of 100,000 operations per pro-
cess (for each latency benchmark). Throughput is the aggre-

Ty product

-+ 500

41000
= 2500
-+5000
~+ 7500

[$)]
L

N
L

N
N

Throughpuctg[mln locks/s]
Thrgughput L;nln Iockg/s]

-
L

©
!

(2]
!

Throughput [mIn locks/s]
I\‘> »

64 256 1024 16
MPI processes (P)

(a) (§ 5.2.1) Tpc analysis, SOB, Fy = 2%.

16

MPI processes (P)
(b) (§ 5.2.2) [T, Ty; analysis, SOB, Fyy = 25%.

U U
256 1024 16 64 256 1024
MPI processes (P)

(c) (§ 5.2.2) T, analysis, SOB, Fyy = 25%.

3000

Ty w0 [T ?
+ 50-20 > -+ 6000 @

42540 3 -4 5000 59
— =10-100 S = 4000 S
92000 ° +3000 I}
= o4 |+ 2000 £

5 €| [=1000 =
© 5 5
S 1000 2 o

— 10+ = 5l
3 S
c c
04 = =

i i i i 0- i i i i
16 64 256 1024 16 256 1024 16 64 256 1024

MPI processes (P)
(d) (§ 5.2.2) T;,; analysis, LB, Fy = 25%.

64
MPI processes (P)
(e) (§ 5.2.3) Tk analysis, ECSB, Fyy = 0.2%.

MPI processes (P)
(f) (§ 5.2.3) T analysis, ECSB, Fyy € {2%,5%}.

Figure 4: Analysis of the performance impact of various thresholds.

gate count of lock acquires or releases divided by the total
time to run a given benchmark. 10% of the first measure-
ments are discarded (warmup). All time measurements are
taken using a high precision rdtsc timer [23].

Experimental Setup We conduct experiments on CSCS
Piz Daint (Cray XC30). Each node has an 8-core HT-enabled
Intel Xeon E5-2670 CPU with 32 GiB DDR3-1600 RAM. The
interconnection is based on Cray’s Aries and it implements
the Dragonfly topology [16,28]. The batch system is slurm
14.03.7. We use C++ and the GNU 5.2.40 g++ compiler
with -O3 optimizations. The utilized Cray DMAPP is 7.0.1-
1.0501.8315.8.4.ari. Unless stated otherwise, we use all the
compute resources and run one MPI process per one HT
resource (16 processes per one compute node).

Machine Model We consider two levels of the hierarchy:
the whole machine and compute nodes, thus N = 2.

Implementation Details We use the libtopodisc [20] li-
brary for discovering the structure of the underlying com-
pute nodes and for obtaining MPI communicators that en-
able communication within each node. We group all the
locking structures in MPI allocated windows to reduce the
memory footprint [17].

5.1 Performance Analysis of RMA-MCS

We present the results in Figure 3. The latency of RMA-MCS
is lower than any other target. For example, for P = 1,024, it
is ~10x and ~4x lower than foMPI-Spin and D-MCS, respec-
tively. This is because foMPI-Spin entails lock contention
that limits performance. In addition, both foMPI-Spin and
D-MCS are topology-oblivious. Then, the throughput analysis
confirms the advantages of RMA-MCS across all the consid-
ered benchmarks. The interesting spike in ECSB and SOB is
because moving from P = 8 to P = 16 does not entail inter-
node communication, initially increasing RMA-MCS’s and

D-MCS’s throughput. We conclude that RMA-MCS consis-
tently outperforms the original foMPI design and D-MCS.

5.2 Performance Analysis of RMA-RW

We now proceed to evaluate RMA-RW. First, we analyze the
impact of various design parameters (Figure 4) and then
compare it to the state-of-the-art (Figure 5). Due to space
constraints, we only present a subset of the results, all re-
maining plots follow similar performance patterns and are
included in the technical report?.

5.2.1 Influence of Tpc

We first discuss how different Tpc values impact perfor-
mance. We consider Tpc € {1,2,4} (one physical counter on
each compute node and every 2nd and 4th compute node,
respectively). We also vary the number of counters on one
node (1,2,4,8). The results are presented in Figure 4a. First,
lower Tpc entails more work for writers that must access
more counters while changing the lock mode. This limits
performance, especially for high P, because of the higher
total number of counters. Larger Tp¢ increases throughput
(less work for writers), but at some point (e.g.,, P = 512
a counter on every 2nd node) the overhead due to read-
ers (contention and higher latency) begins to dominate. We
conclude that selecting the proper Tpc is important for high
performance of RMA-RW, but the best value depends on
many factors and should be tuned for a specific machine.
For example, higher Tpc might entail unpredictable perfor-
mance penalties on Cray XE because the job scheduler does
not enforce contiguous job allocations [5].

5.2.2 Influence of Ty

Next, we analyze the performance impact of Ty ; in the
considered system i € {1,2}. We fix Fy = 25% to en-

2ht’tp: / /spclinf.ethz.ch/Research/Parallel_Programming/RMALocks

Percentages are - Pelrcentafg;__as are 7 10 Percentages are
values o
1000 {Vvalues offf/v & 104 w @ values of Fyy
S RMARW & RMA-RW
™ o o
= £ £
Z 1004 foMPI—R\W E £
o 5 5
E E— -g. 14
-)] [=)]
=] =]
10 o 14 g
o c
foMPI-RW 2%
= foMPI-RW = i
T T T T T T T T T T T T
16 64 256 1024 16 256 1024 16 64 256 1024

MPI processes (P)
(a) Latency (LB).

MPI processes (P)
(b) Throughput (ECSB).

MPI processes (P)
(c) Throughput (SOB).

Figure 5: (§ 5.2.4) Performance analysis of RMA-RW and comparison to the state-of-the-art.

Scheme

- foMPI-A
-+ foMPI-RW
= RMA-RW

Scheme

-»- foMPI-A
- foMPI-RW
= RMA-RW

0-

o

Total time [s]
Total time [s]

o
o

Scheme Scheme

= foMPI-A - foMPI-A
- foMPI-RW - foMPI-RW
-= RMA-RW = RMA-RW

o
S

.00+

o
o

o
s
Total time [s]

Total time [s]

16 32 64 128 256 512 1024 16 32 64
MPI processes (P) MPI processes (P)
(a) Fw = 20%. (b) Fw = 5%.

128 256 512 1024

16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
MPI processes (P) MPI processes (P)
(c) Fw = 2%. (d) Ey = 0%.

Figure 6: (§ 5.3) Performance analysis of a distributed hashtable.

sure that there are multiple writers per machine element
on each level. We start with various Hf\i 1 Tp;i: the max-
imal number of writer acquires before the lock is passed
to the readers; see Figure 4b. As expected, smaller prod-
uct increases throughput because more readers can enter
the CS, but reduces fairness as writers wait longer. In the
second step, we analyze how varying each Ty ; impacts per-

formance. We first fix HII\L 1Tr; = 1000. As N = 2, we
use Tp» € (10,25,50) and Ty, € (100,40,20). The outcome
is shown in Figure 4c. When more writers consecutively
acquire the lock within one node (higher Tt), the through-
put increases. Still, the differences between the considered
options are small (up to 25% of the relative difference), es-
pecially for lower P. This is because of smaller amounts
of inter-node communication. Interestingly, options that
increase throughput (e.g., 50-20) also increase latency, see
Figure 4d. We conjecture this is due to improved fairness
caused by smaller T ; (more processes from different nodes
can acquire the lock). However, the average latency increases
because other writers have to wait for a longer time.

5.2.3 Influence of Tg

Next, we analyze the impact of Tg; see Figure 4e. We first
use Fiy = 0.2%. The throughput for Tx € {1,000 ; 2,000}
drops significantly for P > 512 due to the higher overhead
of writers. Contrarily, increasing Tr improves the through-
put significantly. This is because the latency of readers is
lower than that of writers and a higher T entails a pref-
erence of readers. However, the larger Ty the longer the
waiting time for writers is. Finally, we analyze the relation-
ship between Tr and Fyy in more detail; see Figure 4f. Here,
we vary Fiy € {2%,5%}. The results indicate no consistent
significant advantage (<1% of relative difference for most P)
of one threshold over others within a fixed Fy.

5.2.4 Comparison to the State-of-the-Art
We now present the advantages of RMA-RW over the state-
of-the-art foMPI RMA library [17]; see Figure 5. Here,
we consider different Fyy rates. As expected, any RW dis-
tributed lock provides the highest throughput for Fyy =
0.2%. This is because readers have a lower latency for ac-
quiring a lock than writers and they can enter the CS in par-
allel. The maximum difference between the rates Fy = 0.2%
and Fy = 2% is 1.8x and between Fy = 0.2% and Fyy = 5%
is 4.4x. We then tested other values of Fiy up to 100% to
find out that for Fiy > 30% the throughput remains approxi-
mately the same. At such rates, the throughput is dominated
by the overhead of writers that enter the CS consecutively.
In each case, RMA-RW always outperforms foMPI by >6x
for P > 64. One reason for this advantage is the topology-
aware design. Another one is the presence of Ty ; and Tr
that prevent one type of processes to dominate the other
one resulting in performance penalties.

5.3 Case Study: A Distributed Hashtable
We now illustrate how RMA-RW accelerates a distributed
hashtable (DHT) that represents irregular codes. Our DHT
stores 64-bit integers and it consists of parts called local vol-
umes. Each local volume consists of a table of elements and
an overflow heap for elements after hash collisions. The ta-
ble and the heap are constructed with fixed-size arrays. Ev-
ery local volume is managed by a different process. Inserts
are based on atomic CASes. If a collision happens, the losing
thread places the element in the overflow list by atomically
incrementing the next free pointer. In addition, a pointer to
the last element is also updated with a second CAS. Flushes
are used to ensure memory consistency.

We illustrate a performance analysis in Figure 6. In the
benchmark, P — 1 processes access a local volume of a se-

UPC (standard) [44] Berkeley UPC [1]

SHMEM [4] Fortran 2008 [27] Linux RDMA/IB [33,43] iWARP [18,41]

Put UPC_SET bupc_atomicX_set_RS shmem_swap atomic_define MskCmpSwap masked CmpSwap
Get UPC_GET bupc_atomicX_read_RS shmem_mswap atomic_ref MskCmpSwap masked CmpSwap
Accumulate UPC_INC bupc_atomicX_fetchadd_RS shmem_fadd atomic_add FetchAdd FetchAdd
FAO (SUM) UPC_INC, UPC_DEC bupc_atomicX_fetchadd_RS shmem_fadd atomic_add FetchAdd FetchAdd
FAO (REPLACE) UPC_SET bupc_atomicX_swap_RS shmem_swap atomic_define* MskCmpSwap masked CmpSwap
CAS UPC_CSWAP bupc_atomicX_cswap_RS shmem_cswap atomic_cas CmpSwap CmpSwap

Table 3: lllustration of the feasibility of using libraries/languages other than MPI RMA for RMA-MCS/RMA-RW. * indicates the lack of an atomic swap in
Fortran 2008, suggesting that some of RMA-RW protocols that depend on it would have to be adjusted to a different set of available atomics.

lected process with a specified number of inserts and reads
targeted at random hashtable elements. We compare the to-
tal execution time of foMPI-A (a variant that only synchro-
nizes accesses with CAS/FAQ), foMPI-RW, and RMA-RW.
For Fiy € {2%,5%,20%} RMA-RW outperforms both the re-
maining variants. For F, = 0%, foMPI-RW and RMA-RW
offer comparable performance.

6 DISCUSSION

Using Different RMA Libraries/Languages In our imple-
mentation, we use MPI RMA. Still, the proposed schemes
are generic and can be implemented using several other ex-
isting RMA /PGAS libraries/languages that support the re-
quired operations described in Listing 1. We illustrate this in
Table 3 (we omit the distinction between blocking and non-
blocking operations as any type can be used in the proposed
locks). The analysis indicates that RMA-MCS and RMA-RW
can be used in not only traditional HPC domains (by utiliz-
ing UPC, SHMEM, or RDMA /IB), but also in TCP/IP-based
settings (by using iWARP).

Selecting RMA-RW Parameters To set the parameters,
we first find an appropriate value for Tpc. This is because
our performance analysis indicates that Tpc has on average
the highest impact on performance of both readers and writ-
ers. Here, our evaluation indicates that placing one counter
per compute node results in a reasonable balance between
reader throughput and writer latency. In the second step, we
further influence the reader/writer performance tradeoff by
manipulating with Tg and T ;. To reduce the parameter
space, we fix Ty as indicated in Table 2. Selecting Ty ; de-
pends on the hardware hierarchy and would ideally incor-
porate several performance tests before fixing final numbers.
One rule of the thumb is to reserve larger values for Ty ;
associated with components with higher inter-component
communication costs, such as racks; this may reduce fair-
ness, but increases throughput.

7 RELATED WORK

Queue-Based Locks The well-known traditional examples
of this family are CLH [13,32] and MCS [34]. Yet, they
are oblivious to the memory hierarchy and cannot use this
knowledge to gain performance. More recently, Radovic and
Hagersten [38] proposed a hierarchical backoff lock that ex-
ploits memory locality: a thread reduces its backoff delay if
another thread from the same cluster owns the lock. This
increases the chance to keep the lock within the cluster, but
introduces the risk of starvation. Luchangco et al. [31] im-
proved this scheme by introducing a NUMA-aware CLH
queue that ensures no starvation. Yet, it considers only two
levels of the memory hierarchy. Chabbi et al. [9] general-
ized it to any number of memory hierarchy levels. Similarly
to our scheme, they introduce an MCS lock for each level.
Yet, they do not target DM machines. None of these proto-
cols can utilize the parallelism of miscellaneous workloads
where the majority of processes only read the data.

RW Locks There exist various traditional RW propos-
als [25,29]. Recently, Courtois et al. [12] introduced different
preference schemes that favor either readers (a reader can
enter the CS even if there is a writer waiting) or writers (a
writer can enter the CS before waiting readers). Yet, this
protocol neither prevents starvation nor scales well. Mellor-
Crummey and Scott [35] extended their MCS lock to dis-
tinguish between readers and writers. This algorithm how-
ever does not scale well under heavy read contention. Next,
Krieger et al. [29] use a double-linked list for more flexibility
in how processes traverse the queue. Yet, there is still a sin-
gle point of contention. Hsieh and Weihl [25] overcome this
by trading writer throughput for reader throughput. In their
design, each thread has a private mutex; the readers acquire
the lock by acquiring their private mutex but the writers
need to obtain all mutex objects. This introduces a massive
overhead for the writers for large thread counts. Other ap-
proaches incorporate elaborate data structures like the Scal-
able Non-Zero Indicator (SNZI) tree [30] that traces readers
in the underlying NUMA hierarchy for more locality. Yet,
writers remain NUMA-oblivious. Calciu et al. [8] extend
this approach with an RW lock in which both readers and
writers are NUMA-aware. This design improves memory lo-
cality but it only considers two levels in a NUMA hierarchy.
None of these schemes address DM environments.

Distributed Locks To the best of our knowledge, little re-
search has been performed into locks for DM systems. Sim-
ple spin-lock protocols for implementing MPI-3 RMA syn-
chronization were proposed by Gerstenberger et al. [17].
Some other RMA languages and libraries (e.g., UPC) also
offer locks, but they are not RW, their performance is simi-
lar to that of foMPI, and they are hardware-oblivious.

We conclude that our work offers the first lock for DM
systems that exploits the underlying inter-node structure
and utilizes the RW parallelism present in various data- and
communication-intensive workloads.

8 CONCLUSION

Large amounts of data in domains such as graph compu-
tations require distributed-memory machines for efficient
processing. Such machines are characterized by weak mem-
ory models and expensive inter-node communication. These
features impact the performance of topology-oblivious locks
or completely prevent a straightforward adoption of existing
locking schemes for shared-memory systems.

In this work, we propose a distributed topology-aware
Reader-Writer (RMA-RW) and MCS lock that outperform
the state-of-the-art. RMA-RW offers a modular design with
three parameters that offer performance tradeoffs in selected
parts of the lock. These are: higher lock fairness or better
locality, larger throughput of readers or writers, and lower
latency of readers or writers. This facilitates performance
tuning for a specific workload or environment. RMA-RW
could also be extended with adaptive schemes for a runtime

selection and tuning of the values of the parameters. This
might be used in accelerating dynamic workloads.

Microbenchmark results indicate that the proposed locks
outperform the state-of-the-art in both latency and through-
put. Finally, RMA-RW accelerates a distributed hashtable
that represents irregular workloads such as key-value stores.

Acknowledgements

This work was supported by Microsoft Research through its Swiss
Joint Research Centre. We thank our shepherd Patrick G. Bridges
and the anonymous reviewers for their insightful comments. We
thank the CSCS team granting access to the Piz Dora and Daint ma-
chines, and for their excellent technical support. MB is supported
by the 2013 Google European Doctoral Fellowship in Parallel Com-
puting.

9 References

[1] Berkeley UPC User’s Guide version 2.22.0.
http:/ /upc.Ibl.gov/docs/user/.

[2] T. E. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Trans. Parallel Distrib.
Syst., 1(1):6-16, Jan. 1990.

[3] B. Arimilli et al. The PERCS High-Performance Interconnect.
In Proc. of the IEEE Symp. on High Perf. Inter., HOTI "10, pages
75-82, 2010.

[4] R. Barriuso and A. Knies. SHMEM user’s guide for C, 1994.

[5] A. Bhatele et al. There goes the neighborhood: performance
degradation due to nearby jobs. In Proc. of the ACM/IEEE
Supercomputing, page 41. ACM, 2013.

[6] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[7]1 N. Bronson et al. TAO: Facebook’s Distributed Data Store for
the Social Graph. In USENIX Annual Technical Conference,
pages 49-60, 2013.

[8] I Calciu et al. NUMA-aware Reader-writer Locks. In Proc. of
the ACM Symp. on Prin. and Prac. of Par. Prog., PPoPP '13,
pages 157-166, 2013.

[9] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High
Performance Locks for Multi-level NUMA Systems. In Proc. of
the ACM Symp. on Prin. and Prac. of Par. Prog., PPoPP 2015,
pages 215-226, 2015.

[10] B. Chamberlain, S. Deitz, M. B. Hribar, and W. Wong. Chapel.
Technical report, Cray Inc., 2005.

[11] P. Charles et al. X10: an Object-Oriented Approach to
Non-Uniform Cluster Computing. SIGPLAN Not.,
40(10):519-538, Oct. 2005.

[12] P.]. Courtois, F. Heymans, and D. L. Parnas. Concurrent
control with “readers” and “writers”. Commun. ACM,
14(10):667-668, Oct. 1971.

[13] T.S. Craig. Building FIFO and Priority-Queuing Spin Locks
from Atomic Swap. Technical report, 1993.

[14] D. Dice, V.]. Marathe, and N. Shavit. Flat-combining NUMA
Locks. In Proc. of the ACM Symp. on Par. in Alg. and Arch.,
SPAA '11, pages 65-74, 2011.

[15] D. Dice, V.]. Marathe, and N. Shavit. Lock Cohorting: A
General Technique for Designing NUMA Locks. In Proc. of the
ACM Symp. on Prin. and Prac. of Par. Prog., PPoPP 12, pages
247-256, 2012.

[16] G. Faanes et al. Cray cascade: a scalable HPC system based on
a Dragonfly network. In Proc. of the ACM/IEEE
Supercomputing, page 103, 2012.

[17] R. Gerstenberger, M. Besta, and T. Hoefler. Enabling
Highly-scalable Remote Memory Access Programming with
MPI-3 One Sided. In Proc. of ACM/IEEE Supercomputing, SC
"13, pages 53:1-53:12, 2013.

[18] R. Grant, M. Rashti, A. Afsahi, and P. Balaji. RDMA Capable
iWARP over Datagrams. In Par. Dist. Proc. Symp. (IPDPS), 2011
IEEE Intl., pages 628-639, 2011.

[19] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk. Using Advanced
MPI: Modern Features of the Message-Passing Interface. MIT
Press, 2014.

[20] W. D. Gropp. Personal exchange, 2013.

[21] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann Publishers Inc., 2008.

[22] P. N. Hilfinger et al. Titanium Language Reference Manual,
version 2.19. Technical report, UC Berkeley Tech Rep.
UCB/EECS-2005-15, 2005.

[23] T. Hoefler et al. Netgauge: A Network Performance
Measurement Framework. In Proc. of High Perf. Comp. and
Comm., HPCC'07, volume 4782, pages 659-671, 2007.

[24] G.]. Holzmann. The Model Checker SPIN. IEEE Trans. Softw.
Eng., 23(5):279-295, May 1997.

[25] W. C. Hsieh and W. W. Weihl. Scalable reader-writer locks for
parallel systems. In Proc. of Par. Proc. Symp., pages 656—659,
Mar 1992.

[26] InfiniBand Trade Association. Supplement to InfiniBand
Architecture Spec., Vol. 1, Rel. 1.2.1. Annex A16: RDMA over
Converged Ethernet (RoCE). 2010.

[27] 1SO Fortran Committee. Fortran 2008 Standard (ISO/IEC
1539-1:2010). 2010.

[28] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven,
highly-scalable dragonfly topology. In ACM SIGARCH Comp.
Arch. News, volume 36, pages 77-88, 2008.

[29] O. Krieger, M. Stumm, R. Unrau, and J. Hanna. A fair fast
scalable reader-writer lock. In In Proc. of the Intl. Conf. on Par.
Proc., pages 201-204, 1993.

[30] Y. Lev, V. Luchangco, and M. Olszewski. Scalable
reader-writer locks. In Proc. of the Symp. on Par. in Alg. and
Arch., SPAA ’09, pages 101-110, 2009.

[31] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical
CLH Queue Lock. In W. Nagel, W. Walter, and W. Lehner,
editors, Euro-Par 2006 Par. Proc., volume 4128 of Lecture Notes
in Computer Science, pages 801-810. 2006.

[32] P.S. Magnusson, A. Landin, and E. Hagersten. Queue Locks
on Cache Coherent Multiprocessors. In Proc. of the Intl. Symp.
on Par. Proc., pages 165-171, 1994.

[33] Mellanox Technologies. Mellanox OFED for Linux User
Manual, 2015.

[34] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM Trans. Comput. Syst., 9(1):21-65, Feb. 1991.

[35] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-writer
synchronization for shared-memory multiprocessors. In Proc.
of the ACM SIGPLAN Symp. on Prin. and Prac. of Par. Prog.,
PPOPP '91, pages 106-113, 1991.

[36] MPI Forum. MPI: A Message-Passing Interface Standard. Ver.
3,2012.

[37] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang.
Introducing the graph 500. Cray User’s Group (CUG), 2010.

[38] Z. Radovic and E. Hagersten. Hierarchical backoff locks for
nonuniform communication architectures. In Proc. of the Intl.
Symp. on High-Perf. Comp. Arch., HPCA ’03, pages 241-, 2003.

[39] R. Recio et al. A remote direct memory access protocol
specification, Oct 2007. RFC 5040.

[40] M. L. Scott and W. N. Scherer. Scalable Queue-based Spin
Locks with Timeout. In Proc. of the ACM SIGPLAN Symp. on
Prin. and Prac. of Par. Prog., PPoPP '01, pages 44-52, 2001.

[41] R. Sharp et al. Remote Direct Memory Access (RDMA)
Protocol Extensions. 2014.

[42] H. Takada and K. Sakamura. Predictable spin lock algorithms
with preemption. In Real-Time Operating Systems and Software.
RTOSS 94, Proc., IEEE Workshop on, pages 2-6, 1994.

[43] The InfiniBand Trade Association. Infiniband Architecture Spec.
Vol. 1-2, Rel. 1.3. InfiniBand Trade Association, 2004.

[44] UPC Consortium. UPC language spec., v1.3. Technical report,
Lawrence Berkeley National Laboratory, 20013. LBNL-6623E.

[45] V. Venkataramani et al. TAO: How Facebook Serves the Social
Graph. In Proc. of the ACM Intl. Conf. on Manag. of Data,
SIGMOD ’12, pages 791-792, 2012.

